Skip to main content

Build yourself a Crumble Eggbot from junk

Full details at http://bit.ly/2yZ3dZT



There was three inspirations for this project
·   Femi Owolade supported by Nic Hughes ran a session at Mozilla Festival 2016 using the Crumble’s to make a wheeled robot.
·   The junkbot project https://junkbots.blogspot.co.uk/
Kit
·      Kinder Egg (without the Chocolate and toy)
·      Battery pack and 3xAA
·      Vibrating motor
·      Tape (lots of)
. Sticky-tack of some form.
·      Pens
·      Paper
·      Scissors
·      Glue and Gluegun (optional)


Stage 1: Fix the vibrating motor into the Egg.
Stick (sticky-tack is a good temporary method) the vibrating motor into the Egg with the motor electrical connections sticking out the bottom larger half of the egg. Make sure the unbalanced load is free to move – this is bit that causes the vibrations needed to move the egg.
IMG_0578.JPG


Stage 2: Sticking the pens on.
This is the trickiest bit. Tape the pens on the egg. One suggestion that someone who tried it out suggested, was to use little bits of sticky-tack to position the pens on the egg before tapping the pens onto the egg.

IMG_0579.JPG
If you are using three pens, the third pen should be placed so that all three form a triangle with equal sides, that means the egg can stand-up on a piece of paper on the pen nibs, without anything supporting it.
If you are using four pens, the other two pens should be placed so that all four form a square with equal sides, that means the egg can stand-up on a piece of paper on the pen nibs, without anything supporting it.
Stage 3: Add the battery pack and go.
Using two wires connecting the battery, to the motors. Remove the nibs and set the bot off. It is hopefully vibrating and shaking and scribbling lines on the paper.
IMG_0580.JPG IMG_0582.JPG


To see one in action go to: https://www.youtube.com/watch?v=NRlntdmdQRo


Stage 4: Crumble Controlling
Disconnect the battery connection (the connections on the motor can stay as they are) from the junkbot. Connect the USB cable to the Crumble. To the right of the USB connect there are two connections marked + and -. Connect one wire to the + connection and the other end to the red wire of the battery pack. Connect a one wire to the – connection and the other end to the black wire of the battery pack.
IMG_0583.JPG IMG_0584.JPG
Stage 5: Connect the Egg!
On the Crumble, on the right-side there are two motor connections connect the Motor to these connections. Don’t worry about which of the motors wires is need you swap them around later.


IMG_0585.JPG
Screen Shot 2017-10-23 at 16.23.51.png
Stage 6: Programming it – Making the bot moves.
The software can be found at https://redfernelectronics.co.uk/crumble-software/ it includes how to set it up on your own machine.
Start the Crumble software. Drag from the left the Program start, motor, and wait blocks. Now join the up start block at the top and the motor block next and the wait block last.
Your code should look like this.
Screen Shot 2017-10-23 at 16.23.43.png


Click on the stop within the motor block. It should change to forward. Now you are ready to make it move. Press the green arrow and with the battery pack on, it should (hopefully) keep moving.
Screen Shot 2017-10-23 at 16.24.12.png
If you put a second motor block after the wait block with the stop in the block. It such then stop after 1 second of moving.
Stage 7: Making it do more.
-    Drag a do-until block in (found in the control menu).
-    Go to variable menu and add a new variable, I have used t, select the block marked let=, and drag a t into the blank space.
-    Drag an increase block onto the screen and drag a t into the blank space.
Screen Shot 2017-10-23 at 16.27.45.png
Go to the operator menu and drag onto the screen an = block, go back to variables menu and drag a t into the first space on the = block and click on the second space on the block and type in 5.
Screen Shot 2017-10-23 at 16.29.02.png
Now for the challenge put all these together to copy what is shown below. Now, but the egg-bot on the paper, with the pen lids off, press the green triangle and the motors should be spun in different directions.
This is a junkbot so it may just cause the bot to move a slightly different directions but hopefully it should just draw some squiggly lines.


© Scott Turner
Attribution-ShareAlike
CC BY-SA






All opinions in this blog are the Author's and should not in any way be seen as reflecting the views of any organisation the Author has any association with. Twitter @scottturneruon

Comments

  1. I found so many interesting stuff in your blog especially its discussion. From the tons of comments on your articles, I guess I am not the only one having all the enjoyment here! keep up the good work... programming lab

    ReplyDelete

Post a Comment

Popular posts from this blog

Problem Solving Open educational Resource

  Another new Open Education Resource (OER) has been made available by the School of Science and Technology, University of Northampton. Problem-Solving Author: Dr Scott Turner http://find.jorum.ac.uk/resources/19001 Details These mini lectures are intended for undergraduate computing students, for providing simple steps in problem solving before the students learn a programming language. Problem-Solving and Programming is a common first year undergraduate module on the BSc Computing Programme at the University of Northampton. This material was taken from the problem solving part of the module and provides an introduction to five topics in problem-solving. The resource can be found at:  http://find.jorum.ac.uk/resources/19001 After one week on JORUM  93 downloads  and  12 views  of the OER.

Problem-solving or computational Thinking

Confession time, this has been a research interest for me, along with a number of colleagues, since around 2005. It started with undergraduate students - investigating teaching and developing problem solving skills as a first step in developing programming skills through the use of LEGO-based robots and graphics based programming for undergraduate students. The main vehicle then for developing the problem-solving skills was the LEGO RCX Mindstorms robotics kits and series of gradually more challenging robot-based tasks. Lawhead et al (2003) stated that robots “…provide entry level programming students with a physical model to visually demonstrate concepts” and “the most important benefit of using robots in teaching introductory courses is the focus provided on learning language independent, persistent truths about programming and programming techniques. Robots readily illustrate the idea of computation as interaction”. Synergies can be made with our wo...

Primary School with Computing Problem

A member of the School of Science and Technology helped a local primary school look at ways they could add some programming into some of their ICT lessons. The Greenfoot software ( http://www.greenfoot.org/overview ) and tutorials ( http://www.greenfoot.org/doc ) were used to demonstrate some possible ways this could be done. This type of activity is similar various people are trying around the country to persuade children that programming is fun and not as hard as some people may tell them (see  Coding for kids is as easy as Pi   for another example) This Greenfoot work forms part of the on-going out-reach activities the School of Science and Technology, University of Northampton is actively working in partnerships with schools. Other examples include: Junkbots Outreach during Science and Engineering Week 2012 Girls into Engineering  summary BeSwitched On - Taster Day for computing Dancing robots For more details on any of these please contact Dr Scott ...